

September 28 12-1 pm

Register Today

Inflammation is a hot topic. Net of all people who are looking t inflammation do so throus changes that include diet. t the science stand when t foods and infl

Housekeeping

- You are muted and your camera is turned off
- Write questions in Q&A section
- Continuing Education* and Zoom recording will be available on <u>AmericanDairy.com</u>

CPEU & CME credit provided by New Jersey Academy of Nutrition & Dietetics and New Jersey American Academy of Pediatrics

Accreditation Statement:


This activity has been planned and implemented in accordance with the accreditation requirements of the Medical Society of New Jersey through the joint providership of Atlantic Health System and New Jersey Chapter, American Academy of Pediatrics. Atlantic Health System designates this live educational activity for a maximum of 1.0 *AMA PRA Category 1 Credits*[™] for September 28, 2023 Physicians should claim only the credit commensurate with the extent of their participation in the activity. Successful completion of this CME activity, which includes participation in the activity, with individual assessments of the participant and feedback to the participant, enables the participant to earn 1 MOC Part 2 points in the American Board of Pediatrics' (ABP) Maintenance of Certification (MOC) program. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABP MOC credit.

In order to receive credit the participant must view 85% of the presentation and complete evaluation Within 30-days of evaluation completion, the CME certificate will be issued to the attendee.

Diet and Inflammation

Dr. Brad Bolling Associate Professor at University of Wisconsin-Madison @bwbolling

Jim White, RD, ACSM Exercise Physiologist, Owner of Jim White Fitness & Nutrition Studios @jimwhitefit

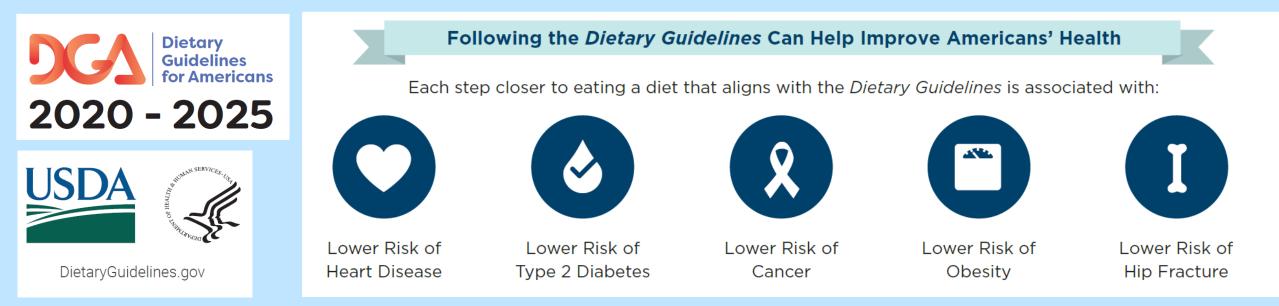
Brad Bolling, PhD Speaker Disclosures

Research Funding:	National Dairy Council UW Dairy Innovation Hub
	Fritz Friday Chair of Vegetable Processing Research
	Kikkoman USA R&D Laboratory
	Almond Board of California
	USDA HATCH WIS02094
	USDA NIFA AFRI WIS03038
	National Science Foundation
	UW-Madison Discovery to Product
	The Peanut Institute
Honoraria/Travel Support:	American Dairy Association North East
Patent:	US 11,142,492 B2 (Methods Of Isolating Phenols)

Diet & Inflammation

Bioactives for health Presented by Dr. Brad Bolling

True Cost of Food Measuring What Matters to Transform the U.S. Food System



500,000 deaths annually in US

\$1.1 Trillion for health care

https://www.rockefellerfoundation.org/report/true-cost-of-food-measuring-what-matters-to-transform-the-u-s-food-system/

Recommended dietary patterns for health

DGA: Healthy U.S.-Style Dietary Pattern DGA: Mediterranean-style Dietary Pattern DGA: Vegetarian Dietary Pattern Dietary Approaches to Stop Hypertension (DASH)

DA U.S. FOOD & DRUG

Diet & risk of chronic disease (in healthy individuals)

https://www.fda.gov/food/food-labeling-nutrition/authorized-health-claims-meet-significant-scientific-agreement-ssa-standard https://www.nhlbi.nih.gov/health-topics/dash-eating-plan

Most Americans Do Not Follow a Healthy Dietary Pattern

Figure 1-6

Dietary Intakes Compared to Recommendations: Percent of the U.S. Population Ages 1 and Older Who Are Below and At or Above Each Dietary Goal

***NOTE:** Recommended daily intake of whole grains is to be at least half of total grain consumption, and the limit for refined grains is to be no more than half of total grain consumption.

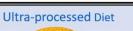
Underconsumed nutrients of concern:

potassium, dietary fiber, choline, magnesium, calcium, vitamin A, vitamin D, vitamin E, vitamin C, iron (adolescent girls, women 19-50 y.o.) March 23, 2023 / Nutrition

What Ultra-Processed Foods Are (and Why They're So Bad for You)

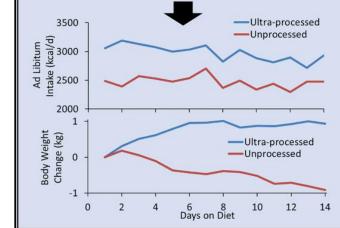
They've been altered to include fats, starches, sugars and hydrogenated oils

Cleveland Clinic



Cell Metabolism

Clinical and Translational Report


Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized **Controlled Trial of Ad Libitum Food Intake**

Graphical Abstract

Diets were presented in random order and matched for provided calories, sugar, fat, fiber, and macronutrients

Highlights

- 20 inpatient adults received ultra-processed and unprocessed diets for 14 days each
- Diets were matched for presented calories, sugar, fat, fiber, and macronutrients

Authors

Kevin D. Hall, Alexis Ayuketah, Robert Brychta, ..., Peter J. Walter, Shanna Yang, Megan Zhou

Correspondence kevinh@nih.gov

In Brief

Hall et al. investigated 20 inpatient adults who were exposed to ultra-processed versus unprocessed diets for 14 days each, in random order. The ultraprocessed diet caused increased ad libitum energy intake and weight gain despite being matched to the unprocessed diet for presented calories, sugar, fat, sodium, fiber, and macronutrients.

https://doi.org/10.1016/j.cmet.2019.05.008

Ultra-processed

Ultra-processed Menu

Day 3

Breakfast

Egg (Papetti's), turkey bacon (Jenni-O) and American cheese (Glenview Farms) on an English muffin (Sara Lee)

Tater tots (Monarch) with ketchup (Heinz)

Orange juice (Sun Cup) with NutriSource Fiber

Unprocessed

Unprocessed Menu

Day 1

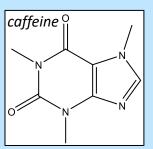
Breakfast

Greek yogurt (Fage) parfait with strawberries, bananas, with Walnuts (Diamond), Salt and Olive Oil

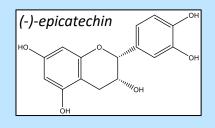
Apple Slices with Fresh Squeezed Lemon

Healthful diets include nutrients and bioactives

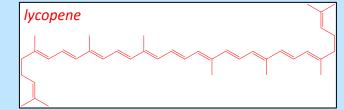
Nutrients

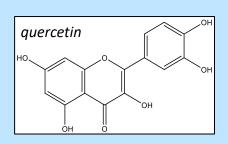

Macronutrients Lipids, proteins, carbohydrates

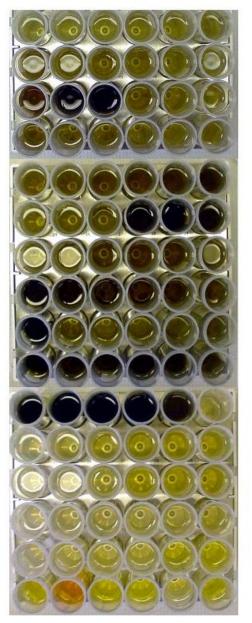
Micronutrients Vitamins, minerals


Bioactives

Alkaloids Organosulfurs Phenolics Carotenoids Phytosterols Peptides Many others...







Healthful diets include nutrients and bioactives

Flavonols OH R_2 JUCH ∠OR₃ В R₁ HC R_4 С А R_5 OH 3 ÓНÖ ÓН Ô Compound R_1 R_2 \mathbf{R}_3 R_4 R5 OH Kaempferol OH Н н н O-rutinoside OH Н Rutin OH Н

OH

OH

OH

OH

Н

Quercetin

Myricetin

Quercirtrin

Isoquercirtrin

Isorhamnetin

OH

OH

OH

OH

 OCH_3

<u>Nutrients</u>

- Vitamins
- Minerals
- Fiber

OH

OH

OH

O-rhamnoside

O-glucoside

н

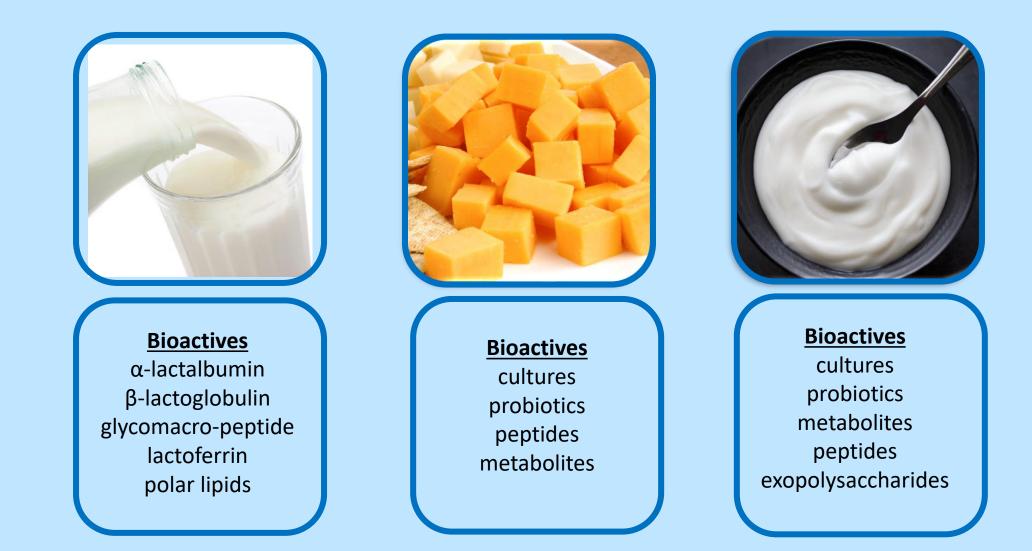
Н

н

OH

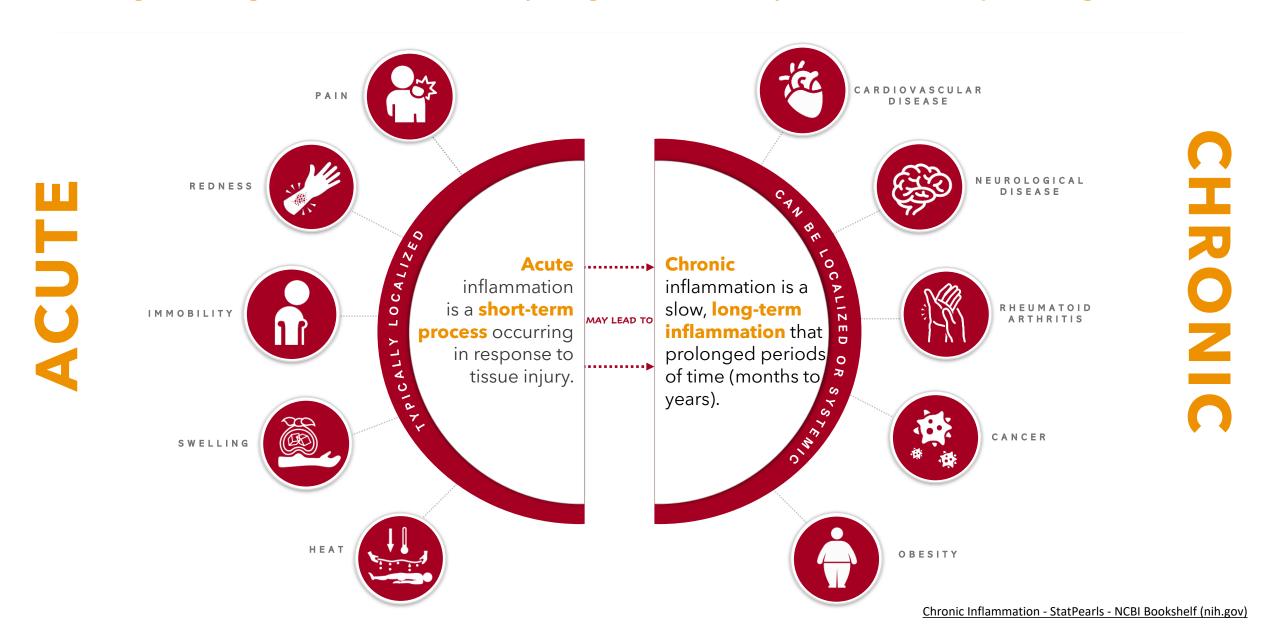
Н

Н


н

Н

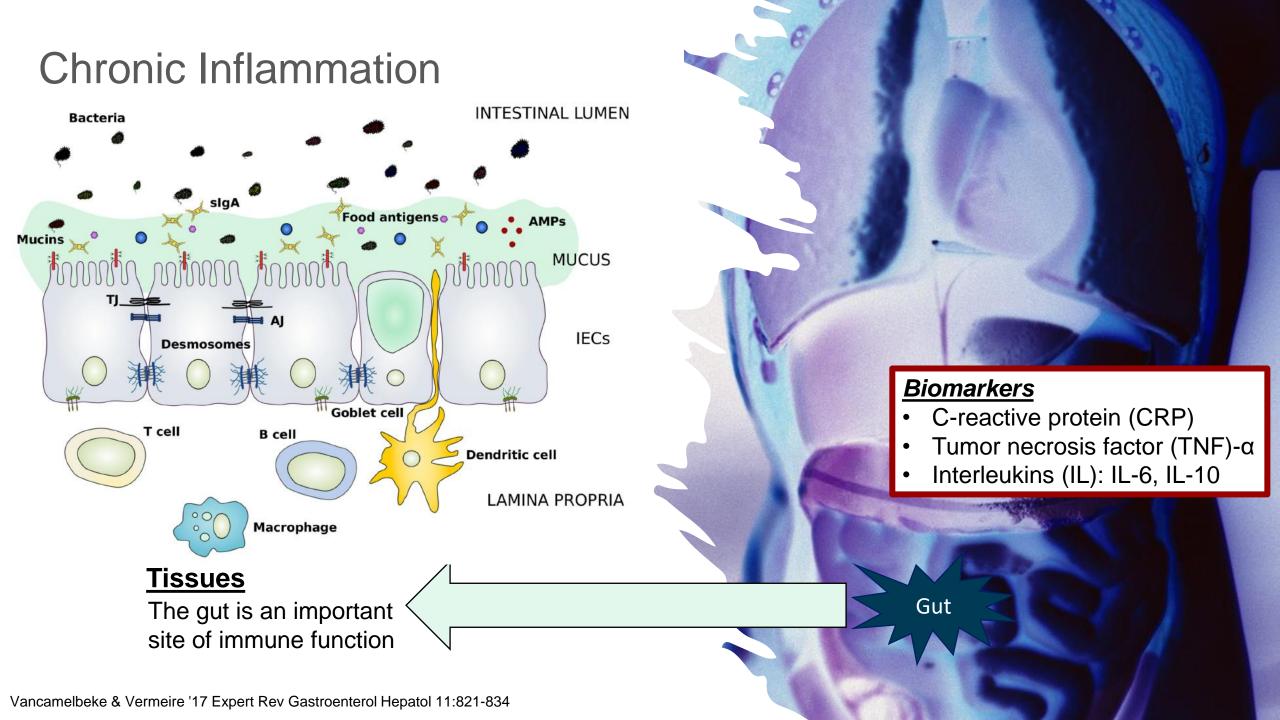
Н


OH

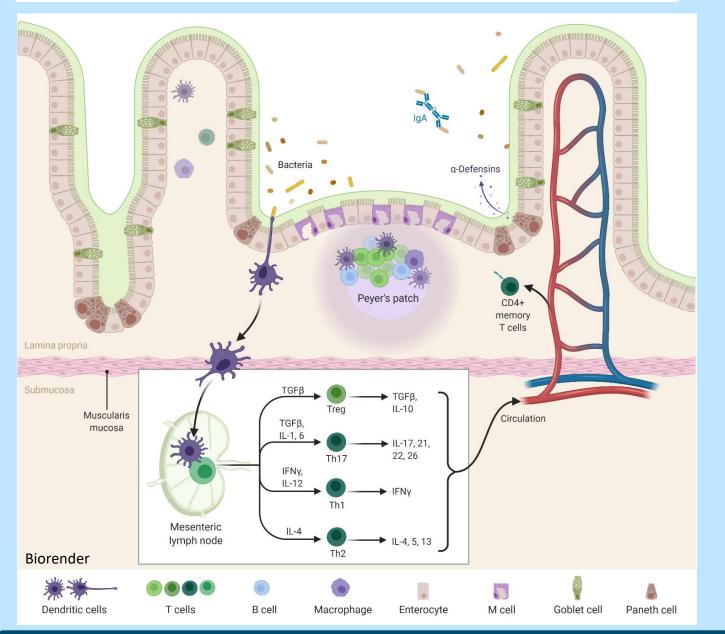
Dairy is a good source of nutrients and bioactives

Images: Milk, Cheese: UW-Madison College of Agriculture and Life Sciences (CALS); Yogurt: Michael P. King/UW-Madison CALS

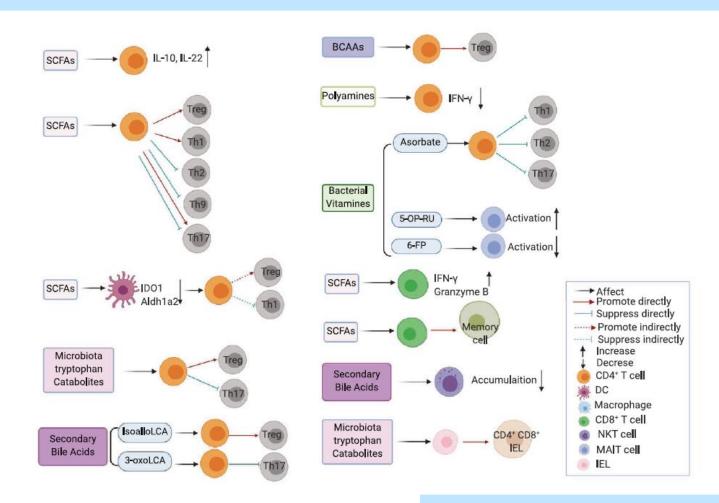
INFLAMMATION is a vital part of the immune system's response to injury and infection. It is one of the ways to defend against foreign invaders as well as a way to signal the immune system to heal and repair damaged tissue.


Chronic Inflammation

Characteristics


- Low-grade & unresolved
- May not have outward symptoms
- Associated with chronic diseases
- Risks
 - obesity
 - environmental chemical exposure
 - stress
 - nutrition
 - microbiome

https://www.niehs.nih.gov/health/topics/conditions/inflammation/index.cfm



Nutrients and bioactives interface with the intestinal immune system

The gut is also linked to the immune system, brain, liver, lung, oral, and many others...

Cellular & Molecular Immunology (2021) 18:866–877 Yang & Cong

Microbial metabolites involved in pathogenesis of:

Inflammatory bowel diseases Diabetes Rheumatoid arthritis Systemic lupus erythematosus Cardiovascular disease Cancers

The gut microbiota are integral to health

Factors include genetics, co-habitation, diet, age, environment, health history

NATURE MEDICINE | VOL 27 | FEBRUARY 2021 | 321-332

medicine

https://doi.org/10.1038/s41591-020-01183-8

ARTICLES

Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals

Francesco Asnicar^{© 1,6}, Sarah E. Berry^{2,16}[©], Ana M. Valdes^{© 3,4}, Long H. Nguyen^{© 5}, Gianmarco Piccinno^{© 1}, David A. Drew^{© 5}, Emily Leeming⁶, Rachel Gibson^{© 2}, Caroline Le Roy^{© 6}, Haya Al Khatib⁷, Lucy Francis^{© 7}, Mohsen Mazidi⁶, Olatz Mompeo⁶, Mireia Valles-Colomer^{© 1}, Adrian Tett¹, Francesco Beghini^{© 1}, Léonard Dubois¹, Davide Bazzani¹, Andrew Maltez Thomas¹, Chloe Mirzayi⁸, Asya Khleborodova⁸, Sehyun Oh⁸, Rachel Hine^{© 7}, Christopher Bonnett^{© 7}, Joan Capdevila^{® 7}, Serge Danzanvilliers^{® 7}, Francesca Giordano⁷, Ludwig Geistlinger⁸, Levi Waldron^{® 8}, Richard Davies^{© 7}, George Hadjigeorgiou^{® 7}, Jonathan Wolf^{® 7}, José M. Ordovás^{® 9,10}, Christopher Gardner^{© 11}, Paul W. Franks^{12,13}, Andrew T. Chan^{® 5,13,14,17}, Curtis Huttenhower^{® 13,14,17}, Tim D. Spector^{® 6,17} and Nicola Segata^{® 1,15,17} [©]

The gut microbiome is shaped by diet and influences host metabolism; however, these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of 1,203 gut microbiomes from 1,098 individuals enrolled in the Personalised Responses to Dietary Composition Trial (PREDICT 1) study, whose detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements were available. We found many significant associations between microbes and specific nutrients, foods, food groups and general dietary indices, which were driven especially by the presence and diversity of healthy and plant-based foods. Microbial blomarkers of obesity were reproducible across external publicly available cohorts and in agreement with circualing blood metabolites that are indicasrs of cardiovascular disease risk. While some microbes, such as *Prevotella copri* and *Blastocystis* spp., were indicators of favorable postprandial glucose metabolism, overall microbeine composition was predictive for a large panel of cardiometabolic blood markers including fasting and postprandial glycemic, lipemic, and infiammatory indices. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favorable cardiometabolic and postprandial markers, indicating that our large-scale resource can potentially stratify the gut microbiome into generalizable health levels in individuals without clinically manifest disease.

Personalized Responses to Dietary Composition Trial (PREDICT 1) Microbial species segregate into groups associated with more and less healthy plant- and animal- based foods.

Distinct microbial signatures discriminate between positive and negative metabolic health indices under fasting conditions

Microbial indicators of obesity are reproducible across varied populations.

The strongest microbiome habitual diet associations are driven by poorly characterized microbes.

Still, much to learn!

Aronia berry

http://dailycampus.com/stories/2017/3/8/the-magic-aronia-berry-sustainable-fruit-for-a-healthier-future http://today.uconn.edu/2012/08/uconn-scientists-work-to-develop-potential-of-native-aronia-in-the-field-and-in-the-laboratory/ Am J Clin Nutr 2015;102:172-81

Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults¹

Aedin Cassidy,² Gail Rogers,³ Julia J Peterson,⁴ Johanna T Dwyer,^{3–5} Honghuang Lin,⁶ and Paul F Jacques^{3,4*}

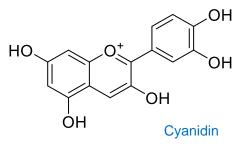
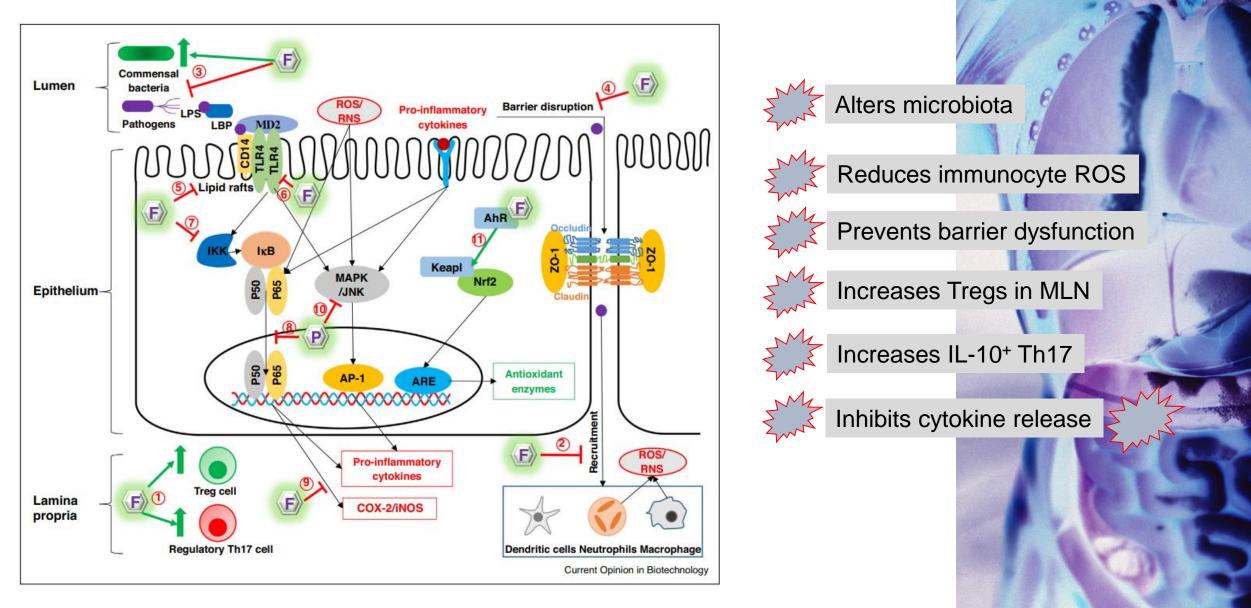

²Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; ³Jean Mayer USDA Human Nutrition Research Center on Aging and ⁴The Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA; ⁵Tufts University School of Medicine and Frances Stern Nutrition Center, Tufts Medical Center, Boston, MA; and ⁶Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA

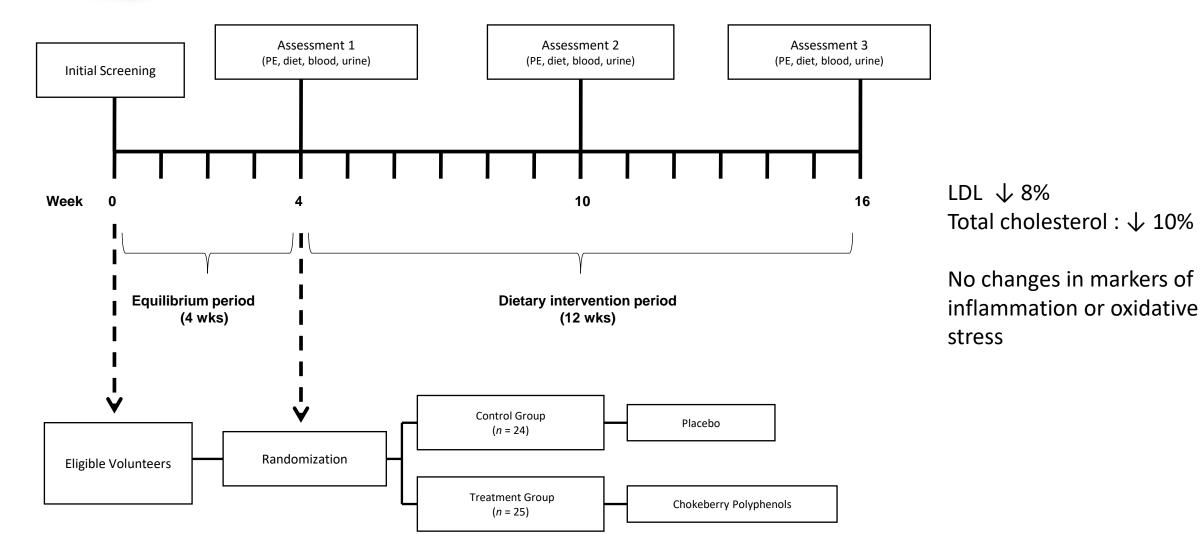
TABLE 3


Associations between different flavonoid subclass intakes and a combined inflammation score in 2375 participants in the Framingham Offspring Study¹

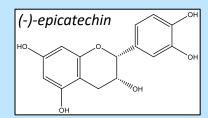
	Quintile categories of flavonoid intake							
Inflammation score	1	2	3	4	5	P-trend		
Flavonols								
Model 1	0.88 (0.42, 1.33)	0.50 (0.06, 0.93)	0.05 (-0.39, 0.49)	-0.40 (-0.84 , 0.04)	-0.72 (-1.16, -0.27)	< 0.001		
Model 2	0.43 (-0.03, 0.88)	0.33 (-0.11, 0.76)	0.11 (-0.33, 0.55)	-0.43 (-0.87 , 0.02)	-0.29 (-0.75, 0.16)	0.01		
Flavones								
Model 1	0.87 (0.42, 1.32)	0.04 (-0.39, 0.48)	0.12 (-0.32, 0.56)	-0.25(-0.69, 0.19)	-0.46(-0.91, -0.01)	< 0.001		
Model 2	0.36(-0.10, 0.82)	-0.05(-0.48, 0.38)	0.12 (-0.32, 0.56)	-0.08(-0.52, 0.35)	-0.11 (-0.57, 0.35)	0.24		
Flavanones								
Model 1	0.50 (0.06, 0.95)	-0.19 (-0.63, 0.26)	0.25 (-0.19, 0.69)	-0.12 (-0.56, 0.32)	-0.12 (-0.58 , 0.33)	0.16		
Model 2	0.12 (-0.33, 0.56)	-0.27 (-0.70 , 0.17)	0.13 (-0.31, 0.57)	0.11 (-0.33, 0.55)	0.15 (-0.31, 0.60)	0.46		
Flavan-3-ols								
Model 1	1.19 (0.74, 1.64)	-0.38 (-0.82, 0.06)	-0.06(-0.50, 0.38)	-0.20 (-0.64, 0.24)	-0.25 (-0.69, 0.20)	0.02		
Model 2	0.70 (0.25, 1.15)	-0.38(-0.82, 0.05)	0.01 (-0.43, 0.44)	-0.05(-0.50, 0.39)	-0.08(-0.52, 0.37)	0.31		
Anthocyanins								
Model 1	0.98 (0.54, 1.43)	0.18 (-0.25, 0.62)	0.25 (-0.19, 0.68)	-0.27 (-0.72 , 0.17)	-0.86(-1.30, -0.41)	< 0.001		
Model 2	0.77 (0.33, 1.22)	0.09 (-0.34, 0.52)	0.30 (-0.13, 0.74)	-0.36 (-0.80, 0.09)	-0.71 (-1.17, -0.25)	< 0.001		
Polyflavonoids								
Model 1	0.63 (0.18, 1.09)	0.30 (-0.14, 0.74)	-0.18 (-0.62, 0.26)	0.02 (-0.42, 0.46)	-0.48(-0.92, -0.03)	0.002		
Model 2	0.29 (-0.16, 0.74)	0.17 (-0.26, 0.60)	-0.13 (-0.56, 0.31)	0.01 (-0.44, 0.45)	-0.14(-0.59, 0.31)	0.24		
Total flavonoids								
Model 1	0.67 (0.21, 1.12)	0.52 (0.08, 0.96)	-0.28 (-0.72, 0.16)	-0.22 (-0.66, 0.22)	-0.39 (-0.84, 0.06)	0.001		
Model 2	0.22(-0.24, 0.67)	0.37(-0.06, 0.81)	-0.17(-0.61, 0.26)	-0.21 (-0.66 , 0.23)	-0.01 (-0.47 , 0.44)	0.34		

¹All values are adjusted (least-squares) mean inflammation scores; 95% CIs in parentheses. Model 1 was adjusted for age, sex, smoking (yes or no), and energy intake. Model 2 was adjusted as for model 1 and for nonsteroidal anti-inflammatory drug use (yes or no), BMI, cardiovascular disease (yes or no), diabetes (yes or no), and saturated fat and *trans* fat intakes. *P* values for the test of linear trend across quintile categories were based on linear regression models with the median intake of each quintile category assigned to individuals with intake in that category, and this quintile median variable was used as a continuous measure in regression models.

Anti-inflammatory mechanisms of berry consumption


Current Opinion in Biotechnology 2020, 61:153–159

Martin et al., 2014 J Funct Food 8C:68-75 Martin et al., 2018 J Funct Food 44:48-57


nized placebo-controlled trial

Dose: 500 mg encapsulated aronia extract 15% anthocyanins

Xie et al., Nutr Res. 2017:37:67-77

Polyphenols & Inflammation

Adv Nutr 2022;13:2070–2083

Perspective: Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline

Kristi M Crowe-White,¹ Levi W Evans,² Gunter GC Kuhnle,³ Dragan Milenkovic,⁴ Kim Stote,⁵ Taylor Wallace,^{6,7} Deepa Handu,⁸ and Katelyn E Senkus¹

¹ Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, USA; ²USDA-ARS, Western Human Nutrition Research Center, Davis, CA, USA; ³ Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; ⁴ Department of Nutrition, University of California Davis, Davis, CA, USA; ⁵ State University of New York, Empire State College, Saratoga Springs, NY, USA; ⁶ Department of Nutrition and Food Studies, George Mason University, Washington, DC, USA; ⁷ Produce for Better Health Foundation, Washington, DC, USA; and ⁸ Academy of Nutrition and Dietetics, Chicago, IL, USA

"Moderate evidence supporting cardiometabolic protection resulting from flavan-3-ol intake in the range of 400–600 mg/d was supported in the literature."

Adv Nutr 2023;14:270–282

Advances in Nutrition 14 (2023) 270-282

Advances in Nutri

112 2 3

ST

Advances in Nutrition

journal homepage: www.journals.elsevier.com/advances-in-nutrition

Review

Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials

Tonny Kiyimba^{1,2}, Peter Yiga^{1,2}, Michael Bamuwamye¹, Patrick Ogwok¹, Bart Van der Schueren^{2,3}, Christophe Matthys^{2,3,*}

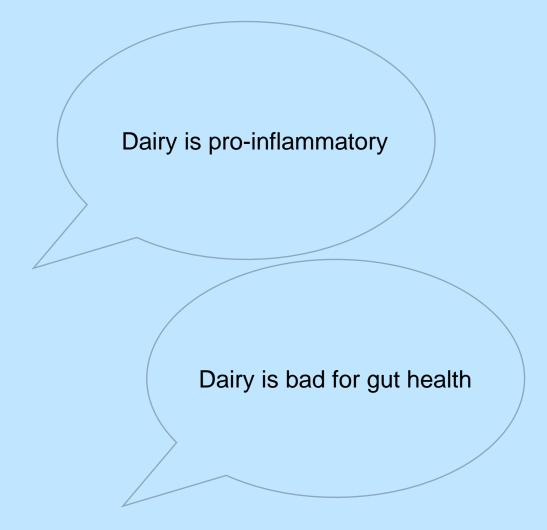
¹ Department of Food Science and Technology, Kyambogo University, Kampala, Uganda; ² Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Belgium; ³ Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium

Among 46 RCTs with ~2500 participants...

No significant impact on IL-6 or CRP

Other bioactives & foods

Recent meta-analyses


Lycopene & tomato [Curr Pharm Des 2023;29(21) 1671-1700]

- 34 RCTs
- \leftrightarrow CRP, IL-6, TNF- α

Almond [Adv Nutr 2022;13(5):1462-1475]

- 16 RCTs
- ↓ CRP (-0.252 mg/L, 95% CI -0.43,-0 .06] at < 60 g/d
- $\leftrightarrow \text{TNF-}\alpha$

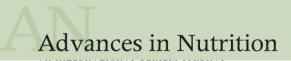
Misconceptions about dairy and inflammation



https://www.health.harvard.edu/blog/dairy-health-food-or-health-risk-2019012515849

Dairy Foods Are Not "Pro-inflammatory"

The American Journal of CLINICAL NUTRITION


The Effects of Dairy Product and Dairy Protein Intake on Inflammation: A Systematic Review of the Literature

Critical Reviews in Food Science and Nutrition

Dairy products and inflammation: A review of the clinical evidence

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: <u>http://www.tandfonline.c</u>

Milk and Dairy Product Consumption and Inflammatory Biomarkers: An Updated Systematic Review of Randomized Clinical Trials

Systematic Review 27 Randomized Control Trials

"This systematic review shows that consumption of dairy products [i.e., milk, cheese, yogurt] and proteins [i.e., whey, casein] has neutral to beneficial effects on biomarkers of inflammation."

Systematic Review 52 Clinical Trials

"Our review suggests that dairy products, in particular fermented products, have anti-inflammatory properties in humans not suffering from allergy to milk, in particular in subjects with metabolic disorders."

Systematic Review 16 Studies

"The consumption of milk or dairy products did not show a proinflammatory effect in healthy subjects or individuals with metabolic abnormalities."

Nieman K, et al. The Effects of Dairy Product and Dairy Protein Intake on Inflammation: A Systematic Review of the Literature. J Am Coll Nutr. 2021 Aug; 40 (6) 571–582. Bordoni A, et al. Dairy Products and Inflammation: A Review of the Clinical Evidence. Crit Rev Food Sci Nutr. 2017 Aug 13; 57 (12): 2497-2525.

Ulven SM, et al. Milk and Dairy Product Consumption and Inflammatory Biomarkers: An Updated Systematic Review of Randomized Clinical Trials. Adv Nutr. 2019 May 1: 10 (suppl_2): S239-S250.

Fermented Dairy Foods may be "anti-inflammatory"

Nutrition, Metabolism & Cardiovascular Diseases (2023) **33**, 471–482

Available online at www.sciencedirect.com

Nutrition, Metabolism & Cardiovascular Diseases

journal homepage: www.elsevier.com/locate/nmcd

SYSTEMATIC REVIEWS AND META-ANALYSES

Effects of fermented dairy products on inflammatory biomarkers: A meta-analysis

Xiaofeng Zhang, Qiuping Luo, Xiaoxian Guan, Yujun Tang, Xiaoli Chen, Jinlan Deng, Jianming Fan*

Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China

Received 13 September 2022; received in revised form 25 November 2022; accepted 13 December 2022 Handling Editor: A. Siani Available online 22 December 2022

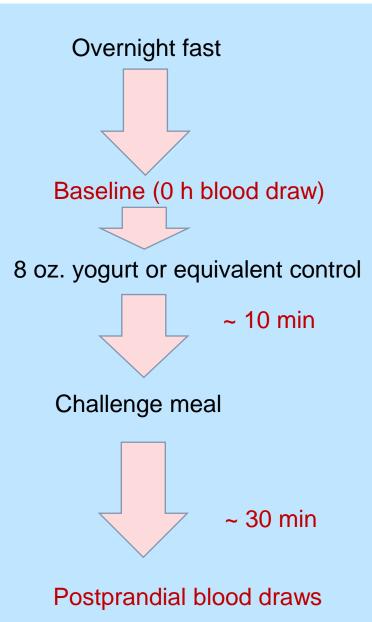
Systematic Review 14 Randomized Control Trials

yogurt (n = 9) fermented milk (n =4) kefir (n = 2)

"...the consumption of FDPs was slightly associated with reduced inflammation...

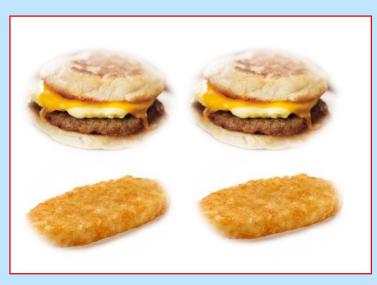
...further explorative work is required to investigate the effects of long-term use of FDPs as part of overall dietary patterns on chronic inflammation."

Yogurt and gut health



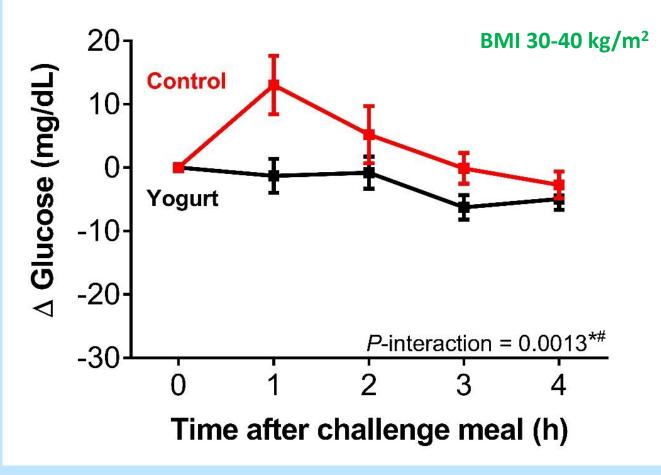
Vis	sit 1: screening		/isit 2: Start Intervention, Acute Meal		5: End Intervention, e Meal	
	wash in participants avoid yogurt		n = 66, control snack, 2	2x daily	/	
			n = 66, low-fat yogurt, 2x daily			
Week:	0	2	5	8	11	

Non-obese: 18.5-27 kg/m² Obese: 30-40 kg/m²


Nutrient	Low-fat Yogurt	Control (soy pudding)
Serving (g)	339 (12 oz.)	324
Calories (kcal)	330	330
Total fat (g)	3	3
Carbohydrate (g)	66	66
Protein (g)	9	6-9
Cholesterol	15	0
Sodium (mg)	180	165-210
Calcium (mg)	450	180-450
Vit. D (IU)	6.75	6.75
Vit A (IU)	1500	600

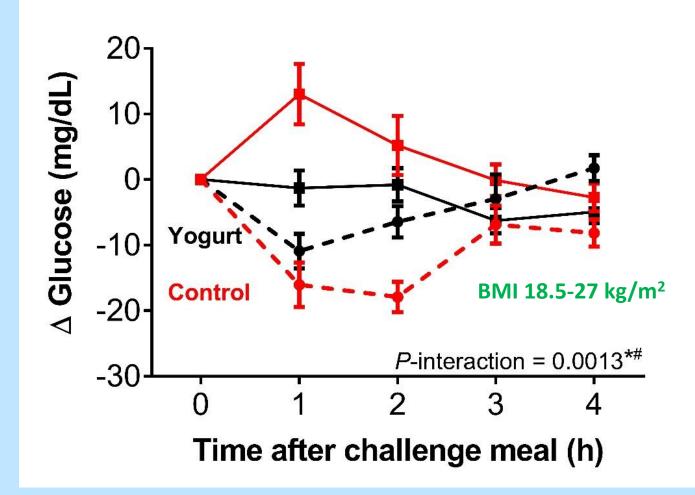
Yogurt and gut health


<u>226 kcal</u>

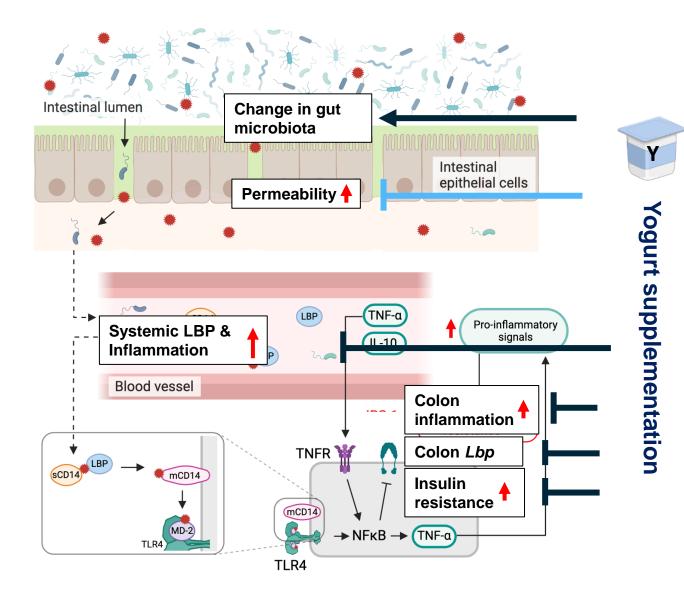

<u>960 kcal</u>

56-60 g fat 82 g carbohydrate 28-30 g protein

Premeal consumption of yogurt reduces post-meal markers of gut barrier dysfunction and inflammation



Yogurt improves postprandial glucose responses


Pei et al. J Nutr. 2018

Yogurt improves postprandial glucose responses

Marker	(O) Yogurt	(O) Control	(N) Yogurt	(N) Control
sCD14	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
LBP/sCD14*	-5%	+11%	+12%	+17%
Endocab*	+5%	-1%	+6%	-2%
IL-6	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
hsCRP	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
TNF-α/sTNFRII*	-7%	-2%	-8%	+10%
P<0.05, *treatment, #obe	Pei et al.	., Br. J. Nutr (2017)		

Mechanisms of yogurt bioactives in the gut

Hasegawa et al. J Nutr. 2023;153:703-12 Pei et al. J Nutr. 2018; 148:1-7 Pei et a. Br J Nutr. 2017;118:1043-51 Putt et al. Food & Function; 2017;8: 406-14

Summarized in: Hasegawa & Bolling. Curr Opin Food Sci. 2023;51:101017

Summary and conclusions

- The gut mediates the beneficial actions of nutrition and bioactives.
- Diet mediates immune health, more information needed on mechanisms from specific foods.
- Healthful dietary patterns include fruits, vegetables, whole grains, and dairy.
- Certain foods might modestly reduce biomarkers of inflammation, but more work is needed to confirm association with chronic disease risk.

Emerging evidence

Scientific agreement

Consensus

Anti-inflammatory effects of yogurt consumption

Lack of direct pro-inflammatory response of dairy in healthy individuals at levels recommended in DGA

- 3 c dairy for 1,600 to 3,200 kCal
- 2020-2025 Dietary Guidelines for Americans state:

"A healthy dietary pattern is associated with beneficial outcomes for all-cause mortality, cardiovascular disease, overweight and obesity, type 2 diabetes, bone health, and certain types of cancer (breast and colorectal)....."

https://bolling.foodsci.wisc.edu/

Research Group

<u>Current</u> Aom Jantip David Lang Ben Iesalnieks Tomomi Komatsu Juliana Obayashi Andrea Noll, MS Chang Liu, PhD Klay Liu, MS

Bradley Bolling, PhD

Fritz Friday Chair of Vegetable Processing Research College of Agricultural and Life Sciences bwbolling@wisc.edu Tel: 608-890-0212

Funding

<u>Alumni</u> Lizzy Akfaly Junhyo Cho, MS Diana DiMarco, MS Matthew Dorris, PhD Erica King, MS Grace Liu, PhD Jiyuan Liu, PhD Derek Martin, RD, PhD Ruisong Pei, PhD Ruma Raghuvanshi, PhD Rod Taheri, MS Jon Valdez, MS Liyang Xie, PhD

Ivy Guo, MS

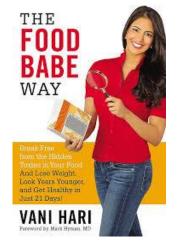
Yu Hasegawa, PhD

Collaborators

Greg Barrett-Wilt Mark Brand Ock Chun Andrew Draghi Justin Jeffrey Bohkyung Kim Jiyoung Lee Federico Rey Joan Smyth Francisco Sylvester Anthony Vella Qinqi Guo Wayne Zeller Liu Zhang

Jim White, RDN, ACSM Speaker Disclosure

- Honoraria:


- American Dairy Association North East
- Other Disclosures:
 - California Grapes,
 - Soy Institute,
 - Plenity,
 - National Cattlemen's Beef Association,
 - National Dairy Council

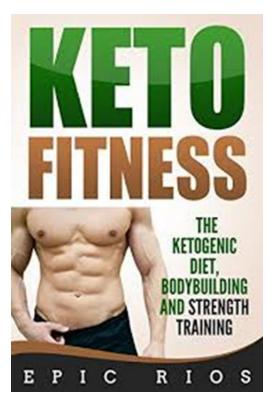
POLL #1

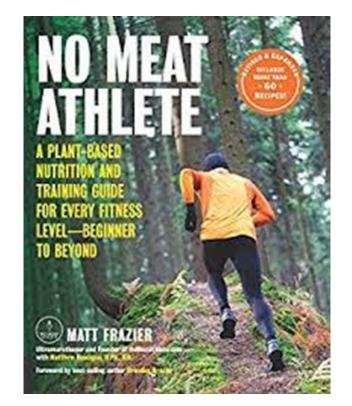
POLL #2

What are people saying about dairy?

Dairy in the media in celebrity media spokespeople

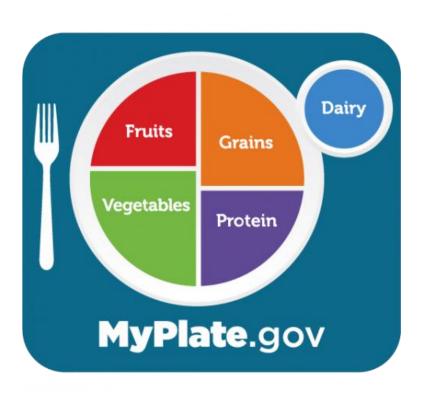
"Chemical defoamers are added to yogurt."

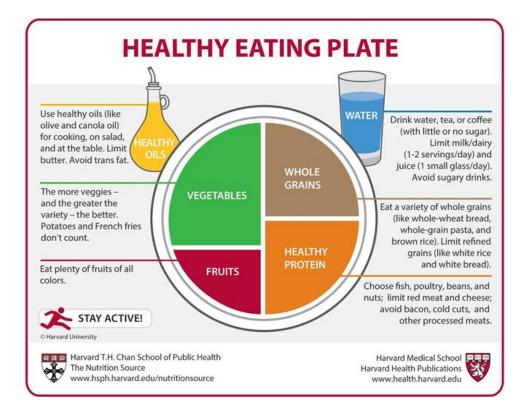

No: Coffee, alcohol, caffeine, tomatoes, peppers, mushrooms, eggplants, fungus, dairy, gluten, corn, soy, added sugar, artificial sweeteners, MSG, GMOs.


"Don't drink less than 2% milk because it contains more sugar than full fat"

"I just tried a goat milk cleanse for eight days to rid my system of parasites.

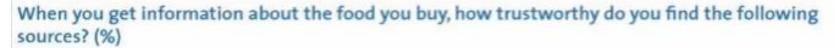
Dairy in our media

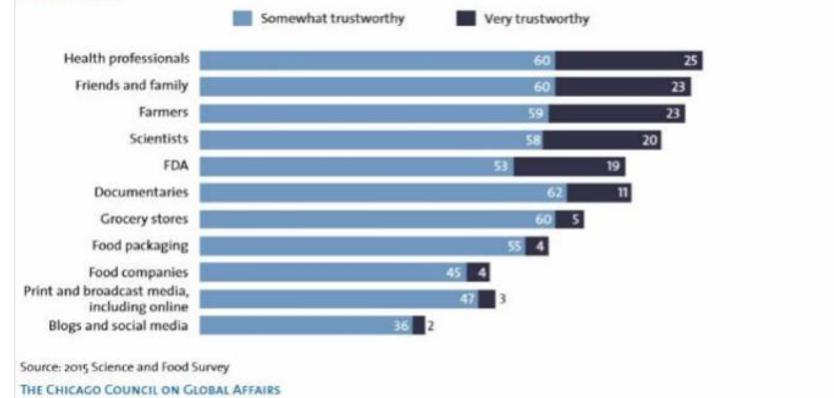




Dairy in the community in our hometowns

Dairy and dietary recommendations





Conflicting Information Creates "Confusion"

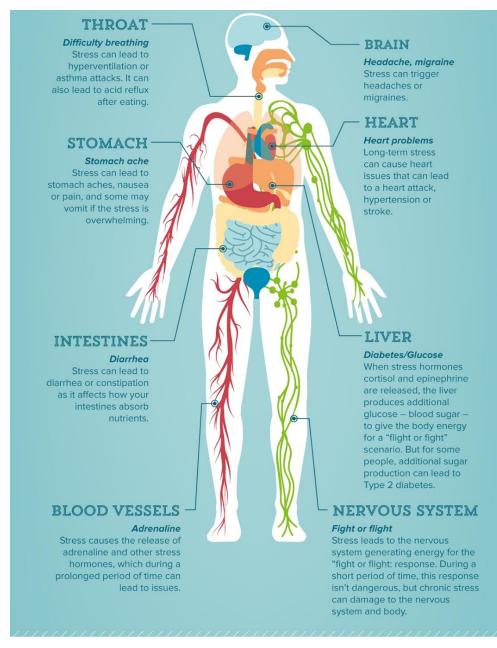
Food Insight. Survey: Nutrition Information Abounds, But Many Doubt Food Choices. 2017.

What are the science-based recommendations on inflammation?

Anti-inflammatory lifestyle practices

American Psychological Association

21%


National Institute of Health

40 M Sleep

National Sleep Association

Stress Causes Inflammation

Stress

- Meditate
- Try deep breathing exercises
- Get a massage
- Yoga
- Tai Chi
- Acupuncture
- Biofeedback
- Prayer

- Volunteer Work
- Hobbies
- Playing with pets
- Shopping
- Keeping a Journal
- Therapy
- Behavioral modification
- Listening to music
- Time Management

Exercise: Acute Inflammation vs Long Term Anti-Inflammatory Effects

- Acute, high intensity, or unaccustomed exercise causes the skeletal muscles to release pro-inflammatory molecules.
- A single bout of exercise may elevate oxidative stress which increases inflammation.
- According to research, exercise decreases inflammation in the long term by:
 - 1. Reducing fat mass
 - 2. Increasing the production of antiinflammatory molecules

Chronic Low-grade Inflammation after Exercise: Controversies https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586919/pdf/JBMS-15-1008.pdf

Exercise, Inflammation and Aging https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320801/#:~:text=There%20is%20evidence%20that%20exercise,intensities%20and%20for%20prolonged%20durations

Exercise recommendations for adults

Cardiovascular training

 All healthy adults aged 18–65 years should participate in moderate intensity aerobic physical activity for a minimum of 30 min on five days per week, or vigorous intensity aerobic activity for a minimum of 20 min on three days per week.

Weight training

• Every adult should perform activities that maintain or increase muscular strength and endurance for a minimum of two days per week.

Physical Activity Guidelines for Americans, 2nd edition.

Sleep and Impact on Inflammation

Impact of Poor Sleep



Growth hormone

Energy levels

Immune system

Testosterone

Fatigue Obesity Increase in cortisol

Better reaction time

Regulates metabolism

Anti inflammatory properties when prolactin released

Muscle repair

Reilly T, Piercy M. The effect of partial sleep deprivation on weight-lifting performance. *Ergonomics*. 1994; 37(1): 107-15. 56 -https://www.ncbi.nlm.nih.gov/pubmed/9415946 -https://www.ncbi.nlm.nih.gov/pubmed/21632481

Impact of Good Sleep

Fatigue

Mood

Sleep

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.marieclaire.com%2F health-fitness%2Fnews%2Fa13230%2Fnew-national-sleep-foundationguidelines%2F&psig=AOvVaw05FFxW1XK3VBOdElsmxX6L&ust=1588552672473000 &source=images&cd=vfe&ved=0CAIQjRxqFwoTCLC48YK6lukCFQAAAAAAAAAAAAAAAA

Sleeping Tips

10-3-2-1-0 Rule of sleeping

- 10 hours before bed no caffeine
- 3 hours before bed no food, exercise or alcohol
- 2 hours before bed no work related activities
- 1 hour before bed no screen time (Turn off all devices)
- O The number of times you hit the snooze button

- Sleepy time tea, time released melatonin
- Room 68 degrees
- Weighted blanket
- Dark room (Shades)
- White noise
- Blue light therapy
- Read before bed
- Go to bed same time every night

MYTH: Dairy products cause inflammation

Foods Found to reduce inflammatory biomarkers

N THE JOURNAL OF NUTRITION

Development and Validation of Novel Dietary and Lifestyle Inflammation Scores @

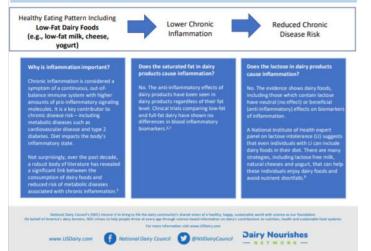
Foods Found to Reduce Inflammatory Biomarkers

- Apples
- Berries
- Tomatoes
- Deep yellow and orange fruits and vegetables
- Dairy foods (e.g., whole and low-fat milk, cheese and yogurt)
- Leafy green vegetables
- Cruciferous vegetables
- Nuts
- Legumes
- Fish
- Poultry
- Coffee
- Tea

The evidence is clear – dairy foods do not cause inflammation

Science Summary Dairy and Inflammation

The Effects of Dairy Product and Dairy Protein Intake on Inflammation: A Systematic Review of the Literature


Nieman KM, Anderson BD, Cifelli CJ. J Am Coll Nutr. 2020;1-12.

Prevention and management of chronic inflammation is important because it can impact the development of various closestes like cardiovascular disease and type 2 diabetes. Nearly 255 of American adults who want health benefits from foods look for lower imflammatory foods. 'Many wonder how dairy foods impact inflammation. This systematic review of 27 randomized controlled trials' reported that dairy foods (e.g., mit), heave and yogur) have neutral to beneficial effects on biomarkers of Inflammation.

In addition to examining the impact of dairy foods on biomarkers of Inflammation, the review also examined the role of dairy proteins, casein and whey, on biomarkers of inflammation and foound on adverse effects. While some studies have suggested animal protein instake may be associated with increased cardiovascular disease and mortality, all 8 trials in this review that investigated consumption of dairy protein on biomarkers of inflammation reported in effect.

This review adds to a growing body of scientific evidence that finds adequate dairy consumption as part of a nutrient-rich, balanced diet is not adversely linked to chronic inflammation, but rather has potential beneficial effects on inflammation. ^{23,8}

*This review focused on trust including adults who were 1) healthy. 2) overweight/obese, but otherwise healthy and 3) overweight/obese with chronic disease, but not with any diagnosis of severe inflammatory-related disorders. It also included dietary interventions with a minimum 2-week duration and a non-dairy or low-dairy control group.

Fall Harvest Farmers Cheese Grain Bowl

Resources and recipes available on USDairy.com

Overview

Dairy foods such as milk, cheese and yogurt are foundational foods in healthy dietary pattems recommended by the Dietary Guidelines for Americans (DGA). Healthy dietary patterns that include dairy foods are linked with lower risk of key chronic diseases such as type 2 diabetes, cardiovascular disease and obesity. These noncommunicable diseases are sometimes called "infammatory diseases", because they often co-occur with chronic, systemic inflammation. Lifestyle factors such as diet may impact chronic inflammation. Lifestyle factors indicates that consuming dairy foods, including whole- and reducedfat dairy foods, is not linked to increased levels of inflammatory markers. Some research indicates that consuming certain dairy foods may be linked to lower levels of some inflammatory.

Healthy dietary patterns with dairy can help lower risk for chronic diseases linked with inflammation

Chronic diseases like cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity affect millions of Americans and result in high healthcare costs and lost productivity.¹⁴ These conditions are also associated with higher levels of inflammatory markers.¹⁴ A healthy det is the foundation for prevention and management of several chronic diseases, including CVD, T2D and obesity.¹⁶ The Scientific Report of the 2020 Dietary Guidelines Advisory Committee emphasizes this point, stating that risk factors for CVD, such as inflammatory markers, are "favorably influenced by habitual adherence to dietary patterns that include fruits, vegetables, whole grains, legumes, nuts, unsaturated vegetable oils, fish, senfood, (and) lower fat dairy products.¹⁶ The Healthy U.S.-Style Dietary Pattern in the 2020 DIeta? servings for children 4-8 years and 2 servings for children 2-3 years.¹⁶ It also recommends 1% to 2 servings of wholeand reduced-fat dairy foods for toddlers 12-32 months and small amounts of yogurt and cheese for infants 6 to 12 months, depending on developmental readines.¹⁰

Eating dairy foods is not linked to inflammatory markers in systematic reviews or meta-analyses

Eating dairy foods does not increase levels of inflammatory biomarkiers in individuals without a mills portein altergy, according to results of two meta-analyses and three systematic reviews. Six of the randomized controlled trials of healthy adults included in a meta-analysis by Benafar et al.¹⁵⁴ assessed the impact of low-fat or high-fat dairy foods on levels of C-reactive protein (CRP), a commonly used biomarker of inflammation produced by the liver. There were no differences in CRP levels between the dairy-och diets and the control diets in four of these studies, even when higher-fat dairy foods were included in the dairy intervention. Zemel et al. reported lower levels of CRP at the end of a 28-day study.¹⁶ and Stancliffe et al. also reported significantly lower CRP levels in the group comming 3.5 dairy servings of dairy foods.¹⁶ Another meta-analysis used an "inflammatory score". which combines many biomarkiers

1 @2021 National Dairy Council? | Sciance Summary: Dairy and Inflammation

USDairy.com

Case study: Feared dairy, gluten, meat caused inflammation

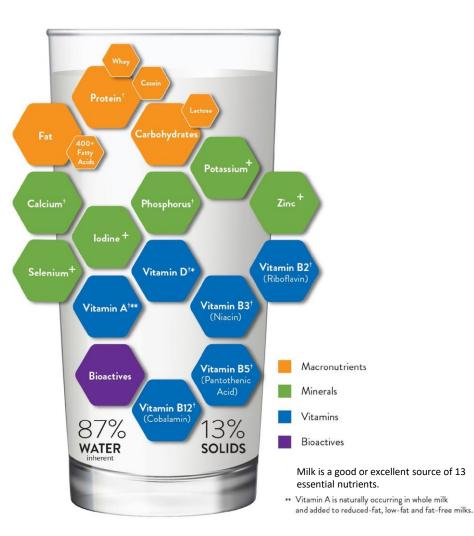
Meet Victor

- Lost 93 pounds over2 years
- ✓ Gained 100 pounds on his bench press

- Increased dairy, whole grains, fruits, vegetables in diet
- Reduce fried foods, refined carbohydrates
- Went to yoga 2x a week
- Slept 8 hours a night

Client testimonials have approved with Jim White Fitness Inc. to showcase their success stories for all and any presentation materials.

Problem: Super restrictive diets



Elimination of dairy = benefits lost

Dairy delivers protein along with great taste		
Dairy Food	Protein	Leucine
Low-fat Cheddar Cheese	7 g	0.61 g
Low-fat Milk (regular or lactose-free dairy milk) (8 oz)	8.5 g	0.8 g
Low-fat Cottage Cheese (4 oz)	14 g	1.44 g
Low-fat Greek Yogurt (8 oz)	18.5 g	1 g
Whey Protein Isolate Powder (unflavored) (1 scoop, 28 g)	24 g	3.2 g

FDA's Daily Value (DV) for potassium of 4700 mg is based on a 2005 DRI recommendation. In 2019, NASEM updated the DRI to 3400 mg. Based on the 2019 DRI, a serving of milk provides 10% of the DRI. FDA rule-making is needed to update this value for the purpose of food labeling.

Nutrition information obtained from: USDA FoodData Central:

Low-fat Cheddar Cheese (173439) Low-fat milk (170873) Cottage cheese (173417) Strawberry Greek yogurt (171300)

https://fdc.nal.usda.gov/fdc-app.html#/

Whey Protein Powder *Stephan Van Vliet, et al. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. Journal of Nutrition. 2015.

Victors Anti-inflammatory meal plan

■ Breakfast: Plain yogurt, handful of nuts, handful of blueberries, coffee

■Snack: Avocado toast with smoked salmon, cucumber, tomato, tea

■Lunch: Salad with chicken, topped with cheese + Greek yogurt dressing

Snack: Almond butter + apple

■ **Dinner:** Fish, veggie + brown rice bowl

#HaveAPlantWithDairy

- Cheese + apple
- Yogurt + blueberries + nuts
- Milk + fruit
- Cottage cheese + cucumbers
- Grilled halloumi and veggie skewers
- Veggie grain bowl with cheese
- Veggies + ranch-style Greek yogurt dip
- Fruit smoothie w/spinach

Take home messages

- 3 servings dairy a day
- Limit inflammatory foods and habits
- Don't forget improving lifestyle habits
- Include anti-inflammatory foods
- However, we can enjoy ALL foods!

Jim White Fitness & Nutrition Studios

www.jimwhitefit.com

Questions?

Visit Us AmericanDairy.com

- ✓ Recording
- ✓ Slide Deck
- Continuing Education Credits
- CME Survey Link: <u>https://www.surveymonkey.com/r/82YQWX7</u>
- CPEU Certificate: CLICK HERE
- Professional Development: <u>CLICK HERE</u>
- ✓ Additional Educational Resources
- ✓ Webinar Library

